Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2372, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491007

RESUMO

Tricarboxylic acid cycle (TCA cycle) plays an important role for aerobic growth of heterotrophic bacteria. Theoretically, eliminating TCA cycle would decrease carbon dissipation and facilitate chemicals biosynthesis. Here, we construct an E. coli strain without a functional TCA cycle that can serve as a versatile chassis for chemicals biosynthesis. We first use adaptive laboratory evolution to recover aerobic growth in minimal medium of TCA cycle-deficient E. coli. Inactivation of succinate dehydrogenase is a key event in the evolutionary trajectory. Supply of succinyl-CoA is identified as the growth limiting factor. By replacing endogenous succinyl-CoA dependent enzymes, we obtain an optimized TCA cycle-deficient E. coli strain. As a proof of concept, the strain is engineered for high-yield production of four separate products. This work enhances our understanding of the role of the TCA cycle in E. coli metabolism and demonstrates the advantages of using TCA cycle-deficient E. coli strain for biotechnological applications.


Assuntos
Ciclo do Ácido Cítrico , Escherichia coli , Ciclo do Ácido Cítrico/genética , Escherichia coli/metabolismo , Fermentação , Biotecnologia , Bactérias
2.
Microbiol Resour Announc ; 13(3): e0106523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299820

RESUMO

We report the draft genome sequence of Dietzia sp. strain CH92, isolated from a high temperature oil well in Baolige oilfield, China. The estimated genome is 3.73 Mb, with 3,479 protein-coding sequences.

3.
Microb Cell Fact ; 22(1): 211, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838676

RESUMO

BACKGROUND: Halophiles possess several unique properties and have broad biotechnological applications including industrial biotechnology production. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), some proteins, small molecular compounds, organic acids, and has the potential to become a chassis cell for the next-generation of industrial biotechnology (NGIB) owing to its simple culture, fast growth, contamination-resistant, low production cost, and high production value. An efficient genome editing system is the key for its engineering and application. However, the efficiency of the established CRISPR-Cas-homologous recombination (HR) gene editing tool for large DNA fragments was still relatively low. In this study, we firstly report a CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas bluephagenesis. RESULTS: Three different NHEJ repair systems were selected and functionally identified in Halomonas bluephagenesis TD01. The NHEJ system from M. tuberculosis H37Rv (Mt-NHEJ) can functionally work in H. bluephagenesis TD01, resulting in base deletion of different lengths for different genes and some random base insertions. Factors affecting knockout efficiencies, such as the number and position of sgRNAs on the DNA double-strands, the Cas9 protein promoter, and the interaction between the HR and the NHEJ repair system, were further investigated. Finally, the optimized CRISPR-Cas9-NHEJ editing system was able to delete DNA fragments up to 50 kb rapidly with high efficiency of 31.3%, when three sgRNAs on the Crick/Watson/Watson DNA double-strands and the arabinose-induced promoter Para for Cas9 were used, along with the background expression of the HR repair system. CONCLUSIONS: This was the first report of CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas spp. These results not only suggest that this editing system is a powerful genome engineering tool for constructing chassis cells in Halomonas, but also extend the application of the NHEJ repair system.


Assuntos
Edição de Genes , Halomonas , Sistemas CRISPR-Cas , Halomonas/genética , RNA Guia de Sistemas CRISPR-Cas , DNA
4.
Microorganisms ; 11(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375039

RESUMO

Rhodococcus sp. strain CH91 is capable of utilizing long-chain n-alkanes as the sole carbon source. Two new genes (alkB1 and alkB2) encoding AlkB-type alkane hydroxylase were predicted by its whole-genome sequence analysis. The purpose of this study was to elucidate the functional role of alkB1 and alkB2 genes in the n-alkane degradation of strain CH91. RT-qPCR analyses revealed that the two genes were induced by n-alkanes ranging from C16 to C36 and the expression of the alkB2 gene was up-regulated much higher than that of alkB1. The knockout of the alkB1 or alkB2 gene in strain CH91 resulted in the obvious reduction of growth and degradation rates on C16-C36 n-alkanes and the alkB2 knockout mutant exhibited lower growth and degradation rate than the alkB1 knockout mutant. When gene alkB1 or alkB2 was heterologously expressed in Pseudomonas fluorescens KOB2Δ1, the two genes could restore its alkane degradation activity. These results demonstrated that both alkB1 and alkB2 genes were responsible for C16-C36 n-alkanes' degradation of strain CH91, and alkB2 plays a more important role than alkB1. The functional characteristics of the two alkB genes in the degradation of a broad range of n-alkanes make them potential gene candidates for engineering the bacteria used for bioremediation of petroleum hydrocarbon contaminations.

5.
Front Bioeng Biotechnol ; 10: 1057938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524053

RESUMO

(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) reductase (IspH) is a [4Fe-4S] cluster-containing enzyme, involved in isoprenoid biosynthesis as the final enzyme of the methylerythritol phosphate (MEP) pathway found in many bacteria and malaria parasites. In recent years, many studies have revealed that isoprenoid compounds are an alternative to petroleum-derived fuels. Thus, ecofriendly methods harnessing the methylerythritol phosphate pathway in microbes to synthesize isoprenoid compounds and IspH itself have received notable attention from researchers. In addition to its applications in the field of biosynthesis, IspH is considered to be an attractive drug target for infectious diseases such as malaria and tuberculosis due to its survivability in most pathogenic bacterium and its absence in humans. In this mini-review, we summarize previous reports that have systematically illuminated the fundamental and structural properties, substrate binding and catalysis, proposed catalytic mechanism, and novel catalytic activities of IspH. Potential bioengineering and biotechnological applications of IspH are also discussed.

6.
Microb Biotechnol ; 15(11): 2730-2743, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36309986

RESUMO

Alkaliphiles are considered more suitable chassis than traditional neutrophiles due to their excellent resistance to microbial contamination. Alkaliphilic Bacillus sp. N16-5, an industrially interesting strain with great potential for the production of lactic acid and alkaline polysaccharide hydrolases, can only be engineered genetically by the laborious and time-consuming homologous recombination. In this study, we reported the successful development of a CRISPR/Cas9-based genome editing system with high efficiency for single-gene deletion, large gene fragment deletion and exogenous DNA chromosomal insertion. Moreover, based on a catalytically dead variant of Cas9 (dCas9), we also developed a CRISPRi system to efficiently regulate gene expression. Finally, this efficient genome editing system was successfully applied to engineer the xylose metabolic pathway for the efficient bioproduction of D-lactic acid. Compared with the wild-type Bacillus sp. N16-5, the final engineered strain with XylR deletion and AraE overexpression achieved 34.3% and 27.7% increases in xylose consumption and D-lactic acid production respectively. To our knowledge, this is the first report on the development and application of CRISPR/Cas9-based genome editing system in alkaliphilic Bacillus, and this study will significantly facilitate functional genomic studies and genome manipulation in alkaliphilic Bacillus, laying a foundation for the development of more robust microbial chassis.


Assuntos
Bacillus , Edição de Genes , Sistemas CRISPR-Cas , Xilose , Bacillus/genética , Ácido Láctico
7.
Arch Microbiol ; 204(5): 259, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419660

RESUMO

A novel bacterial strain, CH91, was isolated from a high-temperature oil reservoir. Morphological characterization, phylogenetic analyses of 16S rRNA gene sequence and genome relatedness indicated that the strain is a potential new species in the genus Rhodococcus. Strain CH91 could grow in the temperature range of 25-50 °C (optimally at 37 °C) and utilize a broad range of long-chain n-alkanes from hexadecane to hexatriacontane. The utilization of the n-alkanes mixture of strain CH91 revealed that the degradation rate was correlated to the length of the carbon chain. Two novel alkB genes encoding alkane 1-monooxygenase were found in the genome of this strain. The protein sequences of both alkane 1-monooxygenases showed a remarkable phylogenetic distance to other reported AlkB protein sequences. These results would help broaden our knowledge about alkane degradation by Rhodocuccus and its potential ecological role. The ability of the strain in the long-chain alkane degradation and thermal tolerance could also be further exploited for bioremediation of oil contaminations and microbial enhanced oil recovery.


Assuntos
Rhodococcus , Alcanos/metabolismo , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , Filogenia , RNA Ribossômico 16S/genética , Rhodococcus/genética , Rhodococcus/metabolismo , Análise de Sequência de DNA
8.
Microb Biotechnol ; 15(5): 1652-1665, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985185

RESUMO

Nα -acetyl-α-lysine was found as a new type of compatible solutes that acted as an organic cytoprotectant in the strain of Salinicoccus halodurans H3B36. A novel lysine Nα -acetyltransferase gene (shkat), encoding an enzyme that catalysed the acetylation of lysine exclusively at α position, was identified from this moderate halophilic strain and expressed in Escherichia coli. Sequence analysis indicated ShKAT contained a highly conserved pyrophosphate-binding loop (Arg-Gly-Asn-Gly-Asn-Gly), which was a signature of the GNAT superfamily. ShKAT exclusively recognized free amino acids as substrate, including lysine and other basic amino acids. The enzyme showed a wide range of optimal pH value and was tolerant to high-alkali and high-salinity conditions. As a new member of the GNAT superfamily, the ShKAT was the first enzyme recognized free lysine as substrate. We believe this work gives an expanded perspective of the GNAT superfamily, and reveals great potential of the shkat gene to be applied in genetic engineering for resisting extreme conditions.


Assuntos
Acetiltransferases , Lisina , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/metabolismo , Staphylococcaceae/genética , Staphylococcaceae/metabolismo
9.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613981

RESUMO

Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed ß-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.


Assuntos
Boehmeria , Boehmeria/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Pectinas/química , Biotecnologia , Concentração de Íons de Hidrogênio
10.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770854

RESUMO

Lactic acid (LA) is an important organic acid with broad industrial applications. Considered as an environmentally friendly alternative to petroleum-based plastic with a wide range of applications, polylactic acid has generated a great deal of interest and therefore the demand for optically pure l- or d-lactic acid has increased accordingly. Microbial fermentation is the industrial route for LA production. LA bacteria and certain genetic engineering bacteria are widely used for LA production. Although some fungi, such as Saccharomyces cerevisiae, are not natural LA producers, they have recently received increased attention for LA production because of their acid tolerance. The main challenge for LA bioproduction is the high cost of substrates. The development of LA production from cost-effective biomasses is a potential solution to reduce the cost of LA production. This review examined and discussed recent progress in optically pure l-lactic acid and optically pure d-lactic acid fermentation. The utilization of inexpensive substrates is also focused on. Additionally, for PLA production, a complete biological process by one-step fermentation from renewable resources is also currently being developed by metabolically engineered bacteria. We also summarize the strategies and procedures for metabolically engineering microorganisms producing PLA. In addition, there exists some challenges to efficiently produce PLA, therefore strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are also discussed.


Assuntos
Desenvolvimento de Medicamentos , Ácido Láctico/metabolismo , Poliésteres/metabolismo , Ácido Láctico/química , Engenharia Metabólica , Poliésteres/química
11.
Microb Biotechnol ; 14(3): 1237-1242, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739583

RESUMO

Pseudomonas putida KT2440 is becoming a new robust metabolic chassis for biotechnological applications, due to its metabolic versatility, low nutritional requirements and biosafety status. We have previously engineered P. putida KT2440 to be an efficient propionate producer from L-threonine, although the internal enzymes converting propionyl-CoA to propionate are not clear. In this study, we thoroughly investigated 13 genes annotated as potential thioesterases in the KT2440 mutant. One thioesterase encoded by locus tag PP_4975 was verified to be the major contributor to propionate production in vivo. Deletion of PP_4975 significantly decreased propionate production, whereas the performance was fully restored by gene complement. Compared with thioesterase HiYciA from Haemophilus influenza, thioesterase PP_4975 showed a faster substrate conversion rate in vitro. Thus, this study expands our knowledge on acyl-CoA thioesterases in P. putida KT2440 and may also reveal a new target for further engineering the strain to improve propionate production performance.


Assuntos
Pseudomonas putida , Biotecnologia , Propionatos , Pseudomonas putida/genética
12.
Microb Biotechnol ; 14(2): 386-391, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32476222

RESUMO

Propionic acid (PA) has been widely used as a food preservative and chemical intermediate in the agricultural and pharmaceutical industries. Environmental and friendly biotechnological production of PA from biomass has been considered as an alternative to the traditional petrochemical route. However, because PA is a strong inhibitor of cell growth, the biotechnological host should be not only able to produce the compound but the host should be robust. In this study, we identified key PA tolerance factors in Pseudomonas putida KT2440 strain by comparative transcriptional analysis in the presence or absence of PA stress. The identified major facilitator superfamily (MFS) transporter gene cluster of PP_1271, PP_1272 and PP_1273 was experimentally verified to be involved in PA tolerance in P. putida strains. Overexpression of this cluster improved tolerance to PA in a PA producing strain, what is useful to further engineer this robust platform not only for PA synthesis but for the production of other weak acids.


Assuntos
Pseudomonas putida , Biotecnologia , Proteínas de Membrana Transportadoras , Propionatos , Pseudomonas putida/genética
13.
Int J Biol Macromol ; 170: 164-177, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352153

RESUMO

Thermo-alkaline xylanases are widely applied in paper pulping industry. In this study, a novel thermostable and alkaline tolerant GH10 xylanase (Xyn30Y5) gene from alkaliphilic Bacillus sp. 30Y5 was cloned and the surface-layer homology (SLH) domains truncated enzyme (Xyn30Y5-SLH) was expressed in Escherichia coli. The purified Xyn30Y5-SLH was most active at 70 °C and pH 7.0 and showed the highest specific activity of 349.4 U mg-1. It retained more than 90% activity between pH 6.0 to 9.5 and was stable at pH 6.0-10.0. To improve the activity, 47 mutants were designed based on eight rational strategies and 21 mutants showed higher activity. By combinatorial mutagenesis, the best mutant 3B demonstrated specific activity of 1016.8 U mg-1 with a doubled catalytic efficiency (kcat/Km) and RA601/2h value, accompanied by optimal pH shift to 8.0. The molecular dynamics simulation analysis indicated that the increase of flexibility of α5 helix and loop7 located near to the catalytic residues is likely responsible for its activity improvement. And the decrease of flexibility of the most unstable regions is vital for the thermostablity improvement. This work provided not only a novel thermostable and alkaline tolerant xylanase with industrial application potential but also an effective mutagenesis strategy for xylanase activity improvement.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/isolamento & purificação , Endo-1,4-beta-Xilanases/isolamento & purificação , Sequência de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xilanos/metabolismo
14.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972939

RESUMO

We report the draft genome sequence of Tepidicella baoligensis strain B18-50T, isolated from a high-temperature oil well in Baolige Oilfield, China. The estimated genome is 2.87 Mb, with 2,653 protein-coding sequences.

15.
Curr Microbiol ; 77(8): 1939-1944, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32318862

RESUMO

A Gram-negative, aerobic, motile, non-spore-forming and rod-shaped bacterium, designated strain B18-69 T, was isolated from oil-well production liquid in Baolige oilfield, China. The strain was able to grow at pH 6-9.5 (optimum at pH 7), in 0-4% (w/v) NaCl (optimum at 0.5-1%, w/v) and at 35-60 °C (optimum at 55 °C). Major cellular fatty acids were C16:0, C19:0 cyclo ω8c, C17:0 cyclo and C18:1 ω7c. The predominant respiratory quinone was ubiquinone 8. Major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and phosphatidylcholine (PC). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain B18-69 T was most closely related to Tepidiphilus margaritifer DSM 15129 T (98.8% similarity). The draft genome of strain B18-69 T was composed of 2,250,419 bp, and the G+C content was 64.6 mol%. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain B18-69 T and T. margaritifer DSM 15129 T were 90.9% and 68.9%, respectively. Genotypic and phenotypic features indicate that strain B18-69 T represents a novel species of the genus Tepidiphilus, for which the name Tepidiphilus baoligensis sp. nov. is proposed. The type strain is B18-69 T (= CGMCC 1.13573 T = KCTC 62782 T).


Assuntos
Hydrogenophilaceae/classificação , Campos de Petróleo e Gás/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hydrogenophilaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
16.
Appl Microbiol Biotechnol ; 104(12): 5303-5313, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32333052

RESUMO

Propionic acid (PA) is widely used in the food, agricultural, and pharmaceutical industries. Since the petrochemical PA is unsustainable, biological production of PA from renewable substrates is gaining attention. In this study, we engineered the strain Pseudomonas putida KT2440 to transform L-threonine to PA with only CO2 released as by-product. The cell factory was created by chromosomal incorporation of heterologous L-threonine deaminase, permease, and acyl-CoA thioesterase, deletion of branch pathways as well as overproduction of the endogenous branched-chain alpha-keto acid dehydrogenase complex. The final engineered strain could produce 399 mM PA from 400 mM L-threonine in a batch biotransformation process, with a molar yield of 99.8% under the optimized conditions in 48 h. The PA titer further reached to 50.3 g/L (679 mM) with a productivity of 0.6 g/L/h in a fed-batch conversion process. No obvious by-products, such as acetate and succinate, were detected in the broth, which would significantly facilitate downstream purification steps. Thus, this study offers an alternative route for biological production of PA.


Assuntos
Engenharia Metabólica/métodos , Propionatos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Treonina/metabolismo , Biotransformação , Deleção de Genes , Microbiologia Industrial
17.
J Antibiot (Tokyo) ; 73(3): 189-193, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31827255

RESUMO

A new p-terphenyl derivative aspergicandidusin A (1), a new cleistanthane diterpenoid 6-deoxyaspergiloid C (13), and 12 known compounds (2-12, and 14) were isolated from the mold Aspergillus candidus. The structures of the new compounds were elucidated by spectral analysis of NMR and MS data. The absolute configuration of C-1 in 13 was determined via the circular dichroism data of the [Rh2(OCOCF3)4] complex. Compounds 2-8 and 11 showed moderate inhibitory activity against K562 cell lines with the IC50 value in the range from 17.9 to 46.3 µM. Compound 13 exhibited moderate cytotoxicity against HepG2 cells with the IC50 value of 47.7 µM. Compounds 11 and 12 exhibited moderate activity against the growth of S. aureus with MIC value of 6.25 µM, respectively.


Assuntos
Aspergillus/metabolismo , Terpenos/metabolismo , Compostos de Terfenil/metabolismo , Triticum/microbiologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Aspergillus/classificação , Células Hep G2 , Humanos , Células K562 , Modelos Moleculares , Estrutura Molecular , Terpenos/química , Terpenos/farmacologia , Compostos de Terfenil/química , Compostos de Terfenil/farmacologia
18.
Curr Microbiol ; 76(4): 410-414, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30741332

RESUMO

A Gram-negative, non-pigmented, aerobic bacterium, designated strain B18-50T was isolated from oil-well production water in Baolige oilfield, China. The strain was able to grow at pH 6.5-10.5 (optimum at pH 7.5-8.5), in 0-3% (w/v) NaCl (optimum at 0-0.5%, w/v) and at 20-60 °C (optimum at 45 °C). Cells of the isolate were motile with a single polar flagellum and non-spore-forming rods. Organic acids and amino acids were used as carbon and energy sources, but sugars and polyols were not assimilated. The major cellular fatty acids were C16:0, C16:1ω6c/ω7c, and C18:1ω7c. Ubiquinone 8 was the predominant respiratory quinone. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The genomic DNA G+C content of the isolate was 62.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain B18-50T was most closely related to Tepidicella xavieri DSM 19605T (97.5% similarity). Comparative analysis of genotypic and phenotypic features indicate that strain B18-50T represents a novel species of the genus Tepidicella, for which the name Tepidicella baoligensis sp. nov. is proposed. The type strain is B18-50T (= CGMCC 1.13575T = KCTC 62779T).


Assuntos
Burkholderiales/classificação , Burkholderiales/fisiologia , Campos de Petróleo e Gás/microbiologia , Filogenia , Composição de Bases , Burkholderiales/citologia , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flagelos , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Especificidade da Espécie , Temperatura , Ubiquinona/química
19.
Sci Rep ; 8(1): 16467, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405184

RESUMO

Alkaline proteases have a myriad of potential applications in many industrial processes such as detergent, food and feed production, waste management and the leather industry. In this study, we isolated several alkaline protease producing bacteria from soda lake soil samples. A novel serine alkaline protease (AprA) gene from alkaliphilic Idiomarina sp. C9-1 was cloned and expressed in Escherichia coli. The purified AprA and its pre-peptidase C-terminal (PPC) domain-truncated enzyme (AprA-PPC) showed maximum activity at pH 10.5 and 60 °C, and were active and stable in a wide range of pH and temperature. Ca2+ significantly improved the thermostability and increased the optimal temperature to 70 °C. Furthermore, both AprA and AprA-PPC showed good tolerance to surfactants and oxidizing and reducing agents. We found that the PPC domain contributed to AprA activity, thermostability and surfactant tolerance. With casein as substrate, AprA and AprA-PPC showed the highest specific activity of 42567.1 U mg-1 and 99511.9 U mg-1, the Km values of 3.76 mg ml-1 and 3.98 mg ml-1, and the Vmax values of 57538.5 U mg-1 and 108722.1 U mg-1, respectively. Secreted expression of AprA-PPC in Bacillus subtilis after 48 h cultivation resulted in yield of 4935.5 U ml-1 with productivity of 102.8 U ml-1 h-1, which is the highest reported in literature to date. Without adding any lime or sodium sulfide, both of which are harmful pollutants, AprA-PPC was effective in dehairing cattle hide and skins of goat, pig and rabbit in 8-12 h without causing significant damage to hairs and grain surface. Our results suggest that AprA-PPC may have great potentials for ecofriendly dehairing of animal skins in the leather industry.


Assuntos
Alteromonadaceae/enzimologia , Pelo Animal , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Alteromonadaceae/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Endopeptidases/química , Endopeptidases/genética , Concentração de Íons de Hidrogênio , Indústrias , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas Recombinantes , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura
20.
J Agric Food Chem ; 66(42): 11055-11063, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351049

RESUMO

Two glycoside hydrolases encoded by the mannan utilization gene cluster of alkaliphilic Bacillus sp. N16-5 were studied. The recombinant Gal27A (rGal27A) hydrolyzed both galactomannans and oligo-galactomannans to release galactose, while the recombinant Man113A (rMan113A) showed poor activity toward galactomannans, but it hydrolyzed manno-oligosaccharides to release mannose and mannobiose. rGal27A showed synergistic interactions with rMan113A and recombinant ß-mannanase ManA (rManA), which is also from Bacillus sp. N16-5, in galactomannan degradation. The synergy degree of rGal27A and rManA on hydrolysis of locust bean gum and guar gum was 1.13 and 2.21, respectively, and that of rGal27A and rMan113A reached 2.00 and 2.68. The main products of galactomannan hydrolyzed by rGal27A and rManA simultaneously were galactose, mannose, mannobiose, and mannotriose, while those of galactomannan hydrolyzed by rGal27A and rMan113A were galactose and mannose. The yields of mannose, mannobiose, and mannotriose dramatically increased compared with the hydrolysis in the presence of rManA or rMan113A alone.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Mananas/metabolismo , beta-Manosidase/metabolismo , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Galactanos/química , Galactose/análogos & derivados , Mananas/química , Família Multigênica , Gomas Vegetais/química , beta-Manosidase/química , beta-Manosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...